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Fuzzy model predictive control of a DC-DC boost converter
based on non-linear model identification
Robert Baždarić, Drago Matko, Aleš Leban, Danjel Vončina and Igor Škrjanc

Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia

ABSTRACT
We present a novel method for the fuzzy control of a DC-DC boost
converter based on a new approach to modelling the converter using
Takagi–Sugeno (T-S) fuzzy identification. Two grades of identification
result in a global model of a non-linear dynamical system and its finite
impulse response model (FIRM) expression, which is therefore applicable
in various model predictive control (MPC) standard methods with con-
straints. The successful simulation and experimental results shown in this
study indicate the robustness and demonstrate stable operation of the
DC-DC converter, even in the dynamic exchange of the discontinuous
conduction mode (DCM) and the continuous conduction mode (CCM)
with the preservation of a similar transient time. Although the study was
primarily conducted on a hybrid simulation model of the DC-DC boost
converter, the presented method is insensitive to the complexity of the
physical process, as it suggests identified model-based control and
emphasizes a new, general approach to pulse energy converter (PEC)
controls. The statement is pursued with the subsequent application to
the physical system of the converter. Furthermore, it underlines the
method’s consideration of real-time processing and its final online
simplicity.
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1. Introduction

Hybrid dynamical systems are scientifically very interesting because of their presence in modern
technology. System control is one of the leading disciplines that have been proven it in the last
20 years and have contributed to the growth of the cyber physical world around us. A DC-DC
boost converter is a member of the switched affine systems (SAS), part of the subgroup of hybrid
dynamical systems [1,2]. Its importance cannot be seen just through an exemplification in the
theoretical sense, but it is also still an up-to-date solution in the field of pulse energy converters
(PECs).

The hybrid structure [2,3], robust solution [3,4], natural constraints [3], complexity reduc-
tion [5,6] and emerging problem of non-linearities exclusion [7–10], can all be recognized as
appealing tasks for the control of a DC-DC boost converter. The state-of-the-art control
solutions [3] are mostly based on linear matrix inequalities (LMIs) optimizations in hybrid
systems [3,5,6], relaxation algorithms in a sense of complexity reduction [11], complementarity
formalism in reducing the modelling ambiguity [12,13], sliding mode control [14,15] and
heuristic approaches, neural networks and fuzzy controls [10,16]. This study, as a continuation
of previous results [16] in considering all of the objectives mentioned above, is suggesting and
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underlining the heuristic approach, but only in tackling the modelling ambiguity, which makes
it different to other heuristic approaches, in general. In the pseudo Banach space, developed
with the assumption that the process is fully measurable, the Lebesgue 2 normed space of
continuous trajectories can be constructed. By the time exclusion, this space gives an ability to
form the steady-state’s subspace examined in [16]. It presents a unique approach to the
prediction of control equilibrium, later on used in the boosting of the control dynamics of a
simple and standard control solution. As such, the steady-state duty cycle based prediction is
more accurate than the analytically driven for a wide range of operating points (OPs).
Subsequently, in order to evolve the examination of the quantitative system’s property to the
quantitative/qualitative, this study presents a unique modelling principle of a DC-DC boost
converter. This leads to a new control methodology called fuzzy model-based predictive
control (FMPC), but with a minimized extra online processing complexity. In contrast to
[16] the controller has better controllability in transients and completely excludes the set-point
overshoots, rather it asymptotically approaches to the steady state, typically for the first-order
system response.

The main controller’s novelty is found in the combination of the Takagi–Sugeno (TS) fuzzy
identification and the model predictive control (MPC). In contrast to any other known MPC
approaches in the control of DC-DC boost converters, especially the most developed explicit
model predictive control (EMPC) [6], that brings novelty in tackling the optimization problem
strictly offline, this study builds a continuous model approximation of a hybrid dynamical system
based on offline identification. Here, the advantage of the new methodology is twofold. First, it
reduces the complexity by preserving the system order of the averaged-switch models, usually
lifted by ambiguity variables [3,4,17], and at the same time reduces the number of regions in a
robust sense. Second, it achieves better model accuracy for robust and especially physical cases
where the switching period is equal to the sampling time. Finally, this method conciliates the
grade of the accuracy, with either complexity or applicability. This is why that result encouraged
the approach of identifying the system that has an already known, analytically driven and
arbitrary accurate model for the robust solutions. The continuous system’s approximation is
afterwards presented in its discrete form as the base for the standard MPC problem with the
preceding horizon principle. The state-space matrices are not analytically driven for the DC-DC
boost converter, but these are time-dependent outputs of the fuzzy engine that heuristically
correlates the previously identified regions. The experimentally rendered system’s knowledge is
presented by three arrays (27 × 5, 3 × 3 and 3 × 3) stored in the processor’s memory. The simple
online arithmetic extracts the knowledge written in the arrays of real numbers. All the convex
optimization is made offline, and the online calculation’s complexity is related to the typical MPC
problems, but now with the matrices of a reduced rank of simpler linear model. The method is
applicable for more complex multiple input multiple output (MIMO) systems, even in this study
presented model is NARX MISO. The experiment with the MIMO identified model was found to
be unnecessary, as a consequence of the models’ accuracy comparison, which was either the
approach in the selection of the regression vectors.

The MPC [18,19] in this study is a compact and standardized control solution for time-variable
system matrices [20], and therefore advanced in the adaptive time-dependent cost function’s
suppression factor and represents suboptimal control with the avoidance of complex quadratic
programming.

In contrast to some of the known fuzzy control solutions in PEC [9], using a simple fuzzy
inference mechanism and ad hoc tuning, or advanced and complex fuzzy solutions in [10], this
study underlies the heuristic approach in fuzzy modelling of Takagi–Sugeno [21] by reducing the
number of rules in the rule base and allowing a deterministic formulation of the consequence
functions, further used in the MPC. Some newer releases [22] are successful in employing a
powerful fuzzy methodology, but this work is augmenting the paradigm in the modelling of the
system’s hybrid nature in order to minimize the online complexity and elevate the applicability.
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As a conclusion, the experimental evaluation of the methodology gives the confirmation of
aforementioned statements.

The paper is organized as follows. Section 2 starts with a paradigm in the modelling of the DC-
DC boost converter and explains the basic problem in an analytical system examination. Section 3
explains the fuzzy model identification and points out the modelling features that are contrary to
the established ones. Section 4 presents an overview of the applied control methods, which will be
followed by the experimental results in Section 5. Lastly, Section 6 provides a short conclusion and
a suggestion for future work on non-linear MPC in PEC by modelling of the system’s hybrid
nature in order to minimize the online complexity and elevate the applicability.

2. Paradigm in the modelling of a DC-DC boost converter

An example is taken from the literature [7,16], with all its numerical values, to be able to compare
the results with previous research.

For the principal part of the electronic circuit in Figure 1, apart from the pulse-width
modulator (PWM) and the controller with its set point s, by using Kirchhoff’s voltage and current
laws, we can form the ordinary differential equations (ODEs) _zðtÞ ¼ f z tð Þð Þ þ g z tð Þð ÞuðtÞ. By
selecting the state vector zðtÞ ¼ vCðtÞ iLðtÞ½ �T and the input as an independent voltage source E(t),
the mathematical model can be driven with the assumption that semiconductors are ideal switches
and that the inductivity has no equivalent series resistance (ESR) [7]

_zðtÞ ¼ AizðtÞ þ BiEðtÞ i 2 ½1; 2; 3� i� circuit topology:

A1 ¼ 1
CðRþ rcÞ

�1 0
0 0

� �
;B1 ¼ B2 ¼ 0

1
L

� �
B3 ¼ 0

0

� �
(1)

A2 ¼ 1
CðRþ rcÞ

�1 R
�CR
L

�CRrC
L

� �
; A3 ¼ 1

CðRþ rcÞ
�1 0
0 0

� �
:

The mathematical modelling of switched-mode electrical circuits faces problems of discontinuity
and all the related side effects or non-linearities [1].

Even if a simple switching algorithm is selected, the analytical definition of the duty cycle
becomes a transcendental mathematical problem and it can only be solved by numerical methods.
The reader is referred to the extensive literature [1,7–10], and references therein, that define the
aforementioned problems.

Based on the authors’ opinions and knowledge about this particular physical system, further
well-established analytical modelling mostly develops in two different directions: first, already
found in the earlier work of Midlebrook, Ćuk and Erikson [23,24], modelling by small signal
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Figure 1. Typical voltage-controlled DC-DC boost converter.
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models or large signal models, more from the side of elementary circuit theory; and second, also
the one comprising the previously mentioned, but more analytically structured in the modern
theory of modelling hybrid systems. The latter is conceptually connected to the system’s piecewise
linearity (PWL), with the implementation of logical variables, constraints, or inequalities as the
product of the natural form of the system. A distinctive presentation on the equivalence of classes
of hybrid dynamical models is available in [25]. It is still unknown regarding the methods that can
be recognized as the most efficient and the general parameters that decide it.

Therefore, if we agree that the aforementioned assumptions (1) are negligible, we can proceed
with the subsequent steps of modelling into the hybrid system model (2)

_zðtÞ ¼
A1zðtÞ þ B1EðtÞ kTS � t � kTS þ t1;k
A2zðtÞ þ B2EðtÞ kTS þ t1;k<t � kTS þ t1;k þ t2;k
A3zðtÞ þ B3EðtÞ kTS þ t1;k þ t2;k <t <ðkþ 1ÞTS

8><
>:

k ¼ 0; 1:::1:

(2)

Now, we simply recognize a hybrid automaton [2] with three discrete states defining a different
continuous dynamics. In the hybrid system modelling, those discrete states are connected to the
mode of the system’s operation. From Equation (2), we find that the modes are defined by the
converter’s switching time period TS and the subintervals t1;k þ t2;k þ t3;k ¼ TS. The converter is
driven by the PWM and the duty cycle d ¼ t1;kTS

�1. Thus, our system is representative of the SAS.
From the aforementioned, with a known TS, a definition of the subintervals relies on the duty
cycle, which is defined as a function of the state variables z tð Þ. The problem that has to be handled
by the hybrid system’s formalisms is the prediction of the time subintervals. That is critical in the
prediction of t3;k naturally controlled by the diode’s (Figure 1) disconnection, which is a distinctive
mode of the converter’s functioning called DCM. The time of the transistor’s on state is t1;k . In the
following sequence t2;k is the time of the transistor’s off state, dependent on the natural diode’s
commutation that lasts t3;k before the next cycle TS appears. Nevertheless, from the aspects of the
control techniques the input signal to our model has to be the duty cycle, and in (2) the PWL
continuous systems are based on the source voltage as an input. The well-established hybrid
system formalisms take a DC-DC boost converter as an illustrative example [2], but from our
point of view it is far from that.

After this section, and driven by the final goal to render the modern and intelligent control
methodology for a non-linear dynamical system, we have to analyse the process and select a
proper modelling formalism. More comprehensive and advanced control methodologies are based
on a mathematical model of the process evolving to the model control solution. The compact and
well-developed methodology is a MPC [18,19]. Our work is conducted in that direction. Here, the
modelling discussion is also important.

The first concern emerging in the analysis of the modelling formalism (2) is that in our
example of SAS the physical process is a combination of modes. The mode by itself has no
physical background if it is not related to other modes that are in harmony with the physical
meaning. If there is no exchange of hybrid modes, the electronic circuit does not function. To
fulfil that, a controlled variable is a limit cycle [1] and it has to be observed from the point of view
of its periodicity.

Second, the non-linearity of the system is not only its hybrid structure, but it is by
assumption (1) also excluded from the non-linear circuit elements together with the anomalies
caused by the energy dissipation. Our process is PEC and the main physical meaning is the
energy transfer.

Third, a modelling problem is a multidisciplinary task and from the control aspects it should
be driven by the final goal, the controllability and the stability of the process [20], which includes
an exclusion of the non-linear phenomena [1].
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Yield, a decomposition of the non-linear system problem to the PWL is plausible, but it has to
be done carefully in order to avoid any unnecessary complexity and increase the accuracy in
realistic applications.

As a conclusion about the objectives, we are focused on a system with a fixed switching period
TS equal to the sampling time, where t1;k ; t2;k ; t3;k<TS are the times related to a different circuit
topology. From the side of the non-linear dynamical system examinations, a general expression
has to evolve in the yet unknown _zðtÞ ¼ f z tð Þ; d tð Þð Þ þ g z tð Þ; d tð ÞÞd tð Þð , for the duty cycle d ¼
t1;kTS

�1 as a control signal for closed-loop control and scalar input signal in the process. The duty
cycle and PWM is the genuine part of our process and has to be modelled accordingly.

Subsequently, with the involvement of identification in the robust modelling of switched mode
converters and the avoidance of strict assumptions, we propose refinements to the general
modelling approach

ẑðkþ 1Þ ¼
Â1ẑðkÞ þ B̂1uðkÞ if δ1ðkÞ ¼ 1 δiðkÞ 2 0; 1f g "i ¼ 1; :::; ni

..

.

Âni ẑðkÞ þ B̂niuðkÞ if δniðkÞ ¼ 1 �ni
i¼1

δiðkÞ ¼ 1½ � ni � number of integer variables

8>>><
>>>:

(3)

}̂i \ }̂j ¼ ;; "i�j }̂i � ith polytop;

δiðkÞ ¼ 1½ � $ ẑ
u

� �
2 }̂i

� � [ni
i¼1

}̂i ¼ }̂

which then evolves into general approximations of the non-linear dynamical system using the
equation

ẑðkþ 1Þ ¼
Xni
i¼1

ÂizðkÞ þ B̂iuðkÞ
� �

δiðkÞ: (4)

The reader is referred to [26] and the references therein.
The modelling approach (3), (4) is generally derived from (1) and (2) and finalized by the MLD

modelling. To derive the final MLD expression for the DC-DC boost converter in Figure 1, a
naturally hybrid system (2), or hybrid automaton, will be approximated by a discrete hybrid
automaton [2]. The new formalism has to be seen as a final discrete-time model, as shown in
(3) and (4) in the general sense. The MLD modelling is explained in detail in the literature
throughout the HYSDEL framework [2,3,5,6,17]. The recognition of the integer variables
δiðkÞ 2 0; 1f g, and accordingly the appropriate model for i ¼ 0; :::ni, is based on the time that
has to be shorter than the discrete time step, kTS <t <ðkþ 1ÞTS. In the online processor’s
operation, this methodology assumes that the definition of δiðkÞ and the calculation of the Âi,
B̂i matrices (4), that are the approximation of the system’s operation in the contemporary linear
region }̂i � }̂, are possible during the time t <TS. From the point of view of a fixed switching
period TS equal to the sampling time, the state-space matrices Âi, B̂i in (4) do not correspond to
(1). That is not only because the matrices Ai, Bi (1) are of the continuous space, it is also that Âi,
B̂i in (4) are assumed to be discrete time t ¼ kTS state-space matrices. Further on, those have to be
accordingly predicted for the system’s evolution through the time kTS <t <ðkþ 1ÞTS based on the
predecessor control variable uðkÞ ¼ dðkÞ. For a DC-DC boost converter, it is a result of proposi-
tional logic equations built on the multiple logic variables that are defined from the A/D and D/A
variables’ transformations during each time step kTS. The general approach discussed elevates the
original state-space model (1) by the involvement of the new discrete state variables, thus
dimðẑÞ > dimðzÞ. Hence, it necessarily affects the complexity of the state-space model and
accordingly limits the applicability. Besides the underlined online complexity, the MLD model
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is valid for an assumption made in (1) added to ESR assumptions as a constructive part of the
electronic circuit. Therefore, the modelling uncertainty that is characteristic for the example of
this work is not completely grasped for natural processes.

The following work is carried out differently to find accurate modelling, which also preserves
the robust and general knowledge of the system. Also, it results in a mathematical form that is
subsequently applicable for the well-developed MPC. The method is based on a state measurable
system, including the source and output current, transfers the main burden of non-linear
dynamical system examination strictly to the offline problem with all its complexity. Hence, it
can be simply considered as one of the EMPC methods [6].

The mathematical framework will not be exact and focused on the problem of differential
inclusion and complementarity formalism [12,13,27], but rather on solutions in the pseudo norm
vector space [16].

Theoretically, the idea is strongly supported in [28, Chapter 3], and elementarily connected to
the approximate continuity and smoothing operation of the disjoint sets in the Lebesgue space.

If we now reconsider the averaging idea [23] to derive the local model, but numerically
emphasizing the mathematical expression of the electronic circuit equivalent for the time
t � TS, we are smoothing the disjoint model structure in t <TS. This smoothing operation, with
the assumed measuring ability of E(t), iL(t), vo(t) and iR(t), will, unlike the known analytical
averaging process, find an approximation on a wider range of system parameter variation around
the OPs. At the same time, the derived local model is a part of a new pseudo norm space }, and
containing the discrete equivalents of approximately continuous functions fi xm kð Þð Þ � }i � }.
The edges of previous polytopes (3) are softened by fuzzy logic [16,21] and new-formed regions
smoothly passing from one to another, tracking the system parameters’ fluctuations.

Equation (3) now obtains a form different from any of the aforementioned analytically driven
approaches

xmðkþ 1Þ ¼
Xp
i¼1

½AmixmðkÞ þ BmiuðkÞ þ RmiwðkÞ�βiðφ2ðkÞÞ

βiðφ2ðkÞÞ 2 ½0; 1�
Xp
i¼1

βiðφ2ðkÞÞ ¼ 1 i ¼ 1; :::; p;

(5)

where the matrices Ami , Bmi are the new numerically identified state-space matrices, Rmi is the
residual matrix and βiðφ2ðkÞÞ are the normalized degrees of fulfilment, which are explained in
detail in Sections 3 and 4, together with reduced number of regions p < ni. In the Equation (5) we
can recognize the main difference with respect to a typical MLD approach based on (2) that is
conceived in the normalized degree of fulfilment and new matrices. The former is a function of a
regression vector φ2ðkÞ, particularly common for an identification process and consisting of
measured system variables in a time t � kTS. In other words, the bivalent logic encoding of the
uncertainties in (2) and (3) is evolved by the polyvalent fuzzy logic, more convenient for a
complexity of realistic examples. Apart from that, the matrices Ami , Bmi and Rmi are rendered
by the identification process, performed without the subjective assumptions and simplification of
an electronic circuit. The new vector of state variables xmðkÞ is not augmented, but maintains a
dimension of 2 as in (1).

However, the theory of discrete hybrid automata and in general the analytical modelling (3) of
the physical system from Figure 1 was conducted using MATLAB [29] continuous/discrete
functions in a hybrid simulation model [16]. Considering the processing power of a PC, and
the advanced MATLAB tool with the possibility of embedded functions, the constructed model will
provide an acceptably accurate approximation of the physical model and the base for the
development of the subsequent methodology.
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At this point, further examinations will be based on the numerical methods in the simulation
and control design of the predictive control algorithm, and in contrast to most of the known
developed methods, they do not consist of PWL expressions (1). By knowing that the major
objective of the following work is the control of the output voltage, which is assumed to be a DC
signal, the physical approach including the aforementioned leads us to the selection of the root-
mean-square (RMS) measured values. Now, the new state variables cause a mathematical trans-
formation of the original state-space (1) to the pseudo norm vector space. It is feasible and based
on the assumption that a new state vector �z ¼ �vo; �iL½ � 2 L

2 (Lebesgue), as a product of the
numerical integration methods with an approximate solution in the system discontinuity [16]. In
the continuation of this work the transformation will be made using MATLAB embedded
functions applied to the simulation model. Accordingly, for a final experiment, we present a
realistic counterpart of the numerical integration in the rendering of the Lebesgue 2 normed
space. Figure 6 presents an integrated circuit (IC) AD637 that is built to provide continuous states
of the transformed hybrid system state-space. Its role is to reduce the online processing workload,
and to inherit the continuous system like the accuracy of the integration in the rendering of the
RMS values. The RMS measurement of the original state-space variables and the measurement of
E(t) and iR(t) is carried out in the time period TS, excited by PWM scaled duty cycle du.

3. Fuzzy identification of hybrid simulation model and converter

DC-DC converters are a good example of where the non-linear dynamical system appeals in the
grasping of global system knowledge or modelling. The following work presents the global process
modelling known as NARX (Non-linear autoregressive with eXogenous inputs) [30]. Guided by
the modelling paradigm discussed in Section 2, the identification of the process analytically
defined as the SAS (1), (2) will be performed on the hybrid simulation model [16] and the
experimental process of a real DC-DC boost converter (Figure 6 and Table 1). Following the
exceptional results [16] when modelling the complete space of stable OPs of a DC-DC boost
converter, this work is conducted in the direction of finding a more superior methodology in
identifying a qualitative pattern of an electronic circuit expressed in the non-linear dynamical
model.

Underlying the previous sections, the decomposition of a complex non-linear problem will be
made on the way to elevate the analytical model’s accuracy for a physical case, where employing
the identification methods diminishes the initial assumptions in the analytic approach. Similar to
[16], and observing from the analytic aspects, the naturally two-dimensional space of the state
variables zðtÞ ¼ vCðtÞ iLðtÞ½ �T will be transformed into the multidimensional space of the Lebesgue
2 normed variables V ¼ f�EðtÞ;�iLðtÞ;�iRðtÞ;�voðtÞ; �duðtÞg 2 R

5þ1 using the measuring process. Now,
our modelling will be formulated referring the objective knowledge collected in the process of
identification. The pseudo norm applied to the measuring quantities ðV; �k kÞ in the simulation
or simply the measurement of the RMS values in the physical process, in the fixed time intervals
kTS for 0 � k <1, is transferring the complete problem from the original hybrid system (2) to the
non-linear continuous system. Referring to the law of the conservation of energy, while we are

Table 1. Constructive elements of the examined and controlled DC-DC boost converter
Figure 6.

Element Code or value

Inductor L 211 μH
Capacitor C 222 μF
Transistor FDB2532
Diode RURP3020
Current shunt monitor INA193
True RMS IC AD637
Microcontroller TMS320F28069
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watching from the point of view of the fixed time interval it makes the energy a continuous
function of time. Our DC-DC boost converter is PEC and the future controller’s task is to transfer
the energy to the consumer and preserve the fixed output voltage �voðtÞ. In a mathematical sense
from the qualitative theory of a dynamical system the controller is controlling an output limit
cycle voðtÞ in the time period Ts [1]. Our identification task is to reveal the MISO periodic map
that transfers the arbitrary number of measured states to the continuous variable �voðtÞ. In the
transformed vector space ðV; �k kÞ, a duty cycle �duðtÞ is given as the continuous variable just in
the general sense. Herein it is discrete, and its precision is as high as the controller’s digit
resolution. The future discrete controller’s sampling time Ts genuinely transforms the new non-
linear continuous system into a discrete time system.

The yet unknown non-linear system in its discrete form x kþ 1ð Þ ¼ f ðx kð Þ; uðkÞÞ, yðkÞ ¼
gðx kð ÞÞ is a complex mapping over the vector of transformed states x 2 R

2 and the input u ¼
du 2 R into the output y 2 R , which will be identified as a T-S fuzzy model

ymðkþ 1Þ ¼ FðφkÞ: (6)

The Takagi–Sugeno fuzzy model, as a global model, approximates the non-linear function y 2 R

as a mapping F of the unknown regression vector φk in a time kTs to the step ahead predicted
output ym(k + 1). All this is possible by assuming that f ; g are mapping over smooth functions
consisting of a vector of states x 2 R

2 in a space R
l. Concerning our DC-DC converter as a

process, the state variables are now RMS-transformed continuous functions x 2 L
2 � R

l.
The identification of non-linear systems in this work is a continuation of previous studies [31–

33] based on a heuristic approach by implementing the fuzzy identification as a Universal
Approximation [34,35]. Equation (6) is reconstructed throughout the two grades of the identifica-
tion, and hence,

ymðkþ 1Þ ¼ βðφ2ðkÞÞθ1φ1ðkÞT : (7)

Physical knowledge of the system that groups this identification process in the grey box identification
[30], helps us in the selection of the regression vectors and those typically consist ofmeasured values in
a time t � kTS. The regression vector components are variables of the vector space ðV; �k kÞ and for
amatter of simplicity in the sequel we avoid a line over the symbol. A several experimentally compared
selections of regression vectors proposed φ1ðkÞ ¼ ½voðkÞ voðk� 1Þ iLðkÞ duðkÞ 1� and for iRðkÞ > 0
φ2ðkÞ ¼ ½EðkÞ voðkÞ=iRðkÞ iLðkÞ�. A comparison ismade bearing inmind themodel/system error, and
the indices 1 and 2 correspond to different grades of identification. The systematic approach was not
built at this point as the problem of identification in PEC may differ greatly from the process to the
process with distinctive physical characteristics. A prior knowledge of the physical system in general
reduces the task extents. Two selected regression vectors are members of a developed fuzzy logic
identification structure. However, these can be separately examined, as the φ1ðkÞ has more a local
impact and the φ2ðkÞ a global impact. For example, that circumstance is designed and used in our
approach.

Therefore, θ1 denotes the parameter matrix of the first-grade identification, resulting in a set of
p-identified ARX linear models (5), evolved from the number of rules in the fuzzy rule base and
equal to the number of OPs. For example, 1θ11 is the vector of the model coefficients of the first
operating range. Despite the ability to use an averaged mathematical model (1), (3) in certain OP
of the DC-DC converter, which would be derived by the perturbation method at that point, we
propose a linear quadratic problem and a least-squares identification method around the selected
point.

This approach gives a predicted and better variance of the model error, especially by observing
from applicability aspects on physical models. Thus, linear models around the OPs will be
identified by the least-squares method
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1θn;1 ¼ ðΨn
TΨnÞ�1Ψn

TYn; (8)

where Ψn 2 R
S X5 is a matrix of measured S training samples of the regression vector φ1

components for the operating point n and Yn 2 R
S is the vector of the step ahead responses

(MISO processes). To gain the OP training data set (8), the physical model is primarily tested to
experimentally define the steady-state du,n for the nth OP. This gives us the centre duty cycle,
which is expanded in the excitation function du,n(t) for the n

th OP region that has to be identified.
The process of fuzzification is carried out based on Gaussian membership functions followed by

a product to represent the conjunction in the premise and ending with the typical centre-average
defuzzification [36]. If we select μ

U 1, generally, the matrix of the degree of fulfilment, as a vector

μ
U1

¼ e
�1

2

φ2;1�c1;1
σ1;1

� �2

e
�1

2

φ2;1�c1;2
σ1;2

� �2

e
�1

2

φ2;1�c1;3
σ1;3

� �2
2
4

3
5, μ

U i 2 R
3 also means that in our example, the

linguistic variable ‘source’ has three Gaussian membership functions. After the selection of the
same for the other two inputs of φ2(k), the fuzzy rules

R i for i ¼ 1:::p, p ¼ dimðμ
U1
Þ � dimðμ

U2
Þ � dimðμ

U3
Þ ¼ 27, and form the rule base (9). The set

of membership functions fU1;1;U1;2;U1;3g � U1 is a subset of the input universe of the discourse
for the linguistic variable ‘source’ E(k), and, similarly, U2 and U3 are universes of discourse for the
‘load’ vo(k)/iR(k) and the ‘coil current’ iL(k), respectively.

As a product of the selected fuzzy construction, the vector of normalized degrees of fulfilment
in fuzzy mapping (7) is presented by (10) in our example for j = 1,2,3 (fuzzy inputs). The vector
βðkÞ 2 R

p has a length equal to the number of rules in the rule base of the fuzzy model, and the
symbol ⊗ is the Kronecker product.

R i : IF EðkÞ isU1;j1 AND voðkÞ=iRðkÞ is U2;j2 AND iLðkÞ is U3;j3

THEN ymðkþ 1Þ ¼ ai;1voðkÞ þ ai;2voðk� 1Þ þ ai;3iLðkÞ þ ai;4duðkÞ þ ai;5

for i ¼ 1; :::; p and unique set ½j1; j2; j3�i if j1; j2; j3 2 f1; 2; 3g
(9)

βðφ2ðkÞÞ ¼
μ
U1
ðφ2;1ðkÞÞ 	 μ

U2
ðφ2;2ðkÞÞ 	 � � � 	 μ

U j
ðφ2;jðkÞÞ

h i

μ
U1
ðφ2;1ðkÞÞ 	 μ

U2
ðφ2;2ðkÞÞ 	 � � � 	 μ

U j
ðφ2;jðkÞÞ

��� ���
1

: (10)

Altogether, in the second grade of identification, we constructed θ2 ¼ fθ1; c; σg as a set of fuzzy
model parameters for c; σ 2 R

3x3, where c (centres) and σ (standard deviations) denote the
matrices of the membership function parameters. The vector β is a vector of normalized values
(10), and thus

Xp
i¼1

βi ¼ 1:

To optimize the selected T-S fuzzy model or to precisely define the parameters in the second
grade of identification, the gradient tuning method was applied. By minimizing the cost function

J ¼ PM
i¼1

1
2 ðymðφ2;φ1jθ2Þi � yiÞ2 over the training set of data fðφ2;φ1ÞM; yMg 2 Γ, the overall para-

meters of the fuzzy model θ2 could be tuned [36]. The simulation process resulting in the
definition of the training data set Γ can be performed after the selection of the excitation input
functions of the duty cycle du,b(t), the source voltage Eb(t) and the resistance Rb(t). First, the b = 1
set of simulation input functions is used for the training of the final construction of the fuzzy
model and other sets, mostly for the evaluation process.

The parameters defined in the first grade of identification θ1 are not expected to differ to a
large extent by performing the minðJÞ

θ2

convex optimization in the second grade of identification.
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To a much larger extent, we expect differing of heuristically chosen initial values of c and σ.
Accordingly, to accomplish the final fuzzy model by faster convergence, the step sizes related to
the membership function parameters (c, σ) are bigger.

In a non-linear dynamical system identification, the minimum of the convex programming is, in
some of the OPs, just a rough approximation. Our approach with two grades of identification, the
least-squares and gradient method of identification, gives special attention to the selection of the
identification sets of the data in both grades. The validation test results are presented in Figures 2 and 3.

The final equation of the fixed Fuzzy NARX (FNARX) model gained by the offline identifica-
tion for the process of the DC-DC converter is

ymðkþ 1Þ ¼ am1kvoðkÞ þ am2kvoðk� 1Þ þ am3k iLðkÞ þ am4kduðkÞ þ am5k

ymðkÞ ¼ voðkÞ þ eðkÞ e� prediction error;
(11)

where amðkÞ ¼ ½am1ðkÞ am2ðkÞ am3ðkÞ am4ðkÞ am5ðkÞ� denotes the vector of the model’s time-
dependent coefficients. These are defined for each step of the control amðkÞ ¼ βðφ2ðkÞÞθ1 that
takes care of the model adaptive tracking of the process’ dynamical changes.

3.1 Evaluation of new modelling vs. the established methods

Except for the model evaluation carried out by typical identification framework, it is not less
important to point out the main novelty featured in the new method vs. the already well-
established methods.

The presented ‘troublesome’ identification is primarily bringing more precise modelling in
processes with lower processing capabilities, where the sampling time is equal to the switching
period TS, and conciliating the control efficiency with its complexity. Most of the present methods
are originally based on averaging and building the models on the typical involvement of an integer
variable δiðkÞ 2 0; 1f g by assuming that the two-circuit topologies exchange happened in an
instant time t ; 0, but in reality t � ε for ε > 0. The topologies in that time are physically
correlated, which brings the necessary complexity in analytical examinations. For a discussion
on this topic the reader is referred to [12,13,27] and the references therein.

Figure 2. Results of comparison simulation combining vo and ym (the identified simulation model) for the 53843 testing
samples; SSE ¼ 5:93 � 103 MSE ¼ 0:1101.
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Presenting the system by typical linear or bilinear state-space presentation is just a continua-
tion of the well-known averaging method [37]. Accordingly, to make a meaningful comparison,
three differently built models, that is, the hybrid simulation model (2), the identified fuzzy non-
linear dynamical model (5) (in this work) and the analytically linearized averaged-switched model
of the DC-DC boost converter are simulated and excited by the sinusoidal function around the
OP. Based on the MATLAB [29] ID toolbox, the model responses’ data gave the expected results.
The drift effect related to the gain and the phase margin of the averaged-switched model is
obvious on the sinusoidal excitation in the duty cycle range of du,OP ±0.004, while the fuzzy
identified model tracks the original hybrid simulation model with estimated preciseness, as shown
in Figure 4. Furthermore, this comparison is carried out in CCM OP, where the standard
analytical approaches [37] based on one integer variable (integer programming) have a compar-
able preciseness. The superiority is more obvious in DCM, where the identified model still
preserves the same accuracy. Again with assumption that other methods are also based on the
fixed switching period equal to the sampling time.

4. Applied control methods’ overview

The fuzzy identification of the DC-DC boost converter derived finite impulse response model
(FIRM) is generally in the form (11) or also typically called input/output model [19], where the
indices k denote a time-variable linear model.

By assuming a full state measurement system, a novel approach in the research of the DC-DC
boost converter is the fact that the current of a primary circuit iL(k) will be obtained by a further
mathematical modelling assumed to be a part of the measured disturbance matrix Rmk . The Rmk

also consists of the residual component am5k of our identified model (11). The following control
algorithms based on a fuzzy internal model are derived for only one natural state variable that is
simultaneously the output and controlled variable.

The MPC problem will be solved online in one scan of the processor time k for the model (5),
which is now an approximated linear model (11) in the state-space form ym ¼ Cmkxm. The state-space
matrices at time t ¼ kTS are Amk ¼ am1k ; am2k ; 1; 0½ �, Bmk ¼ am4k ; 0½ �, Rmk ¼ am3k iLðkÞ þ am5k ; 0½ �
and Cmk ¼ 1; 0½ �.

Figure 3. Results of a comparison of the experimental prediction ym (the identified converter) and vo as the process output on
the 53843 testing samples for the real physical system Figure 6; SSE ¼ 8:53 � 103 MSE ¼ 0:1584.
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Therefore, the vector of state variables is xmðkÞ ¼ voðkÞ; voðk� 1Þ½ �, input uðkÞ ¼ duðkÞ and the
unit step disturbance wðkÞ ¼ 1. This will be a basic representation of the internal model in the
following Finite Horizon FMPC algorithms applied in the simulation and experiment.

The MPC methods are traditionally considered for the processes with the slow dynamics. Their
limitation can be recognized in the computing complexity, which is a multilayer problem. Despite
being aware of this limitation, our work was driven by the final goal that is implementing a MPC
into the processes with faster dynamics. In the last 20 years the MPC methodology has been
developed to become the most dominant in process technology. It was given great attention by
academia. That developing process has constructed a control framework as a result of long-term
researches in the field of control techniques. Therefore, it is a respective control solution for a
broad number of different processes. Unfortunately, it is too pragmatic to expect that one control
toolbox can grasp all possible natural processes and automatically devise the most efficient way of
controlling them. We refer the reader to [6] and the references therein, where the authors present
a survey of EMPC. That work certainly gives the diversities of the MPC complexity, in general.

Shown in [16] and continued in this work, the physical system’s extents and constraints do not
necessarily lead to the complexity of the applied control technique. In our work we found the
MPC method more as a methodology than a single technique [19]. We have to underline its
compact and standardized framework in looking for a stable control technique in the robust sense.
The main drawback of the method is its complexity. As discussed in [6] the EMPC emerges as the
solution to that problem. It suggests a transferring of the online processor’s work to the offline
regime. Our methodology is correlated to that idea. The optimization algorithms or solvers are the
biggest processing time consumer. Because of that fact we performed a different recognition of the
problem for an example of this work. Our online processing related to the MPC method is
reduced to the unconstrained standard predictive control problem [18,19]. It is driven to the
complete exclusion of the optimization algorithms and it can be considered as the suboptimal
control. The MPC online optimization is derived by the basic linear algebra problem
@JðkÞ=@uðkÞ ¼ 0, where JðkÞ denotes the performance index and uðkÞ an input variable. A DC-

Figure 4. Comparison of second-order identified linear models in narrow regions around the OP, identification vs. analytical
averaging.
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DC boost converter’s input variable uðkÞ ¼ duðkÞ is constrained with the interval
½0; maxðduðkÞÞ <1Þ. This critical constraint should not be a problem of the control algorithm,
but rather a problem of the physical process, and it is tackled by the process itself. Although an
unrealistic combination of the process parameters can lead to a violation of that constraint, the
fuzzy identified model will even in that case saturate the control variable to the assigned margins.
Furthermore, the state variables’ constraints are grasped by the suppression factors of the MPC
performance index, to decelerate a quick controller’s response. In the case of the high peaks of the
state variables, which are the characteristic events of the PEC, our controller will be disturbed
proportionally to the energy level of the particular transient. This is obvious by recalling the
external RMS measured values. The unexpected peaks are products of the process parameters’
change and it is sufficiently treated by the method’s reference model interpolation. The complex
LMI is considered unnecessary, if the previous modelling work has achieved the most accurate
linear approximation of the system at the particular OP. In the absence of any processing time
‘luxury’ that assumption performs acceptably. The time of the processing is not only burdened by
the optimization as a cumbersome solution, but also by the rank of the process model. Our
suggested modelling solution preserves the original rank of the system, characteristically for the
traditional state-space averaging. The global model identification strategy discussed, and based on
the objective physical constraints render the explicit control solution in the sense of the EMPC
main goal. In contrast, the physical constraints are not simply assumed as being fixed. The online
T-S fuzzy logic will select the consequence linear function that is a product of a measurement at
the time kTS, and treat a realistic violation of the assumed constraints. Using a case-oriented
implementation of the MPC, we reduce the processing complexity, but do not endanger the
objectivity and the accuracy. Reducing the problem of the non-linear dynamical system to the
PWL constrains the MPC on the short horizon prediction and control solution. So, a physical
limitation should work in the sense of the MPC reduction complexity in combination with the
aforementioned.

4.1 Fuzzy dynamic matrix control

The first and the most basic MPC is the one strictly based on the dynamic Matrix [18,32,38]. As
our system is proven to be open-loop stable, the DMC can be performed over FIRM (11) by
transformation in the finite step response model (FSRM), which is one of the main characteristics
of the DMC algorithm. The control law has to minimize the performance index

JðkÞ ¼
XNu

i¼1

qiðymðkþ ijkÞ � rðkþ ijkÞÞ2 þ
XNu�1

i¼0

λiþ1ðkÞΔuðkþ ijkÞ2: (12)

4.2 Fuzzy predictive functional control

The predictive functional control (PFC) method originally developed by Richalet [39,40], and
further in [41], has been chosen exactly because of its main distinction, when compared with the
already explained DMC method. Thus, the reduction of the algorithm calculation workload and
the simultaneous achievements in fast response processes make this method very suitable for the
objectives given in the example of this work. The control law has to minimize the performance
index

Jðû; kÞ ¼
XnH
j¼1

yRðkþHjjkÞ � ymðkþHjjkÞ
	 
2þXnH

j¼1

λj
2ðkÞûðkþ j� 1jkÞT ûðkþ j� 1jkÞ:

(13)
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Both selected finite-horizon MPC methods and their objective functions or performance indexes
consist of the suppression factor λ applied to the manipulated variable. Furthermore, it is time
dependent and updated for each scan time by the controller’s algorithm. The update or λ(k) is
derived from the simple proportional dependence of the predicted process gain in the time (k + 1)
Ts, and hence, λ(k) = aSUPP ⋅ ym(k + 1)⋅ u(k)−1, tuned by aSUPP parameter.

The involvement of the suppression factor in the MPC methods is mostly used to achieve
smoother control [38,40].

5. Simulation and experimental results

The identified fuzzy model based on an examination of the simulation model is integrated into the
control algorithms and examined on the simulation model of Figure 5. So, fruitful results
rendered by this examination led us in an experimental evolution of the identification and control
developed methods on the physical system Figure 6. The selection of the electrical components
Table 1 (Ts = 333 μs) is conducted in a sense to achieve a meaningful comparison with the similar
expertise from the literature [7,16], as generally the complete article.

The new and experimental identification training data set fðφ2;φ1ÞM; yMg 2 Γ is constructed
by using the same microcontroller and its storage place Figure 6 in an open-loop regime. A
process of convex programming in the minimization of the cost function minðJÞ

θ2

is programmed

and executed on the standard laptop. As expected, the identification results are less accurate than
those based on an examination of the simulation model, but also very much applicable for the
final construction of the control algorithm. Figure 3 presents the comparison of the measured
testing data set and the ‘1 step ahead prediction’ based on the experimentally identified fuzzy
model. As the new methodology is seeking for a robust solution, so the process of identification is
more appealing in a sense of the test-bench preparation. The major part of the identification
process of such a robust system is laying in the construction of the variable sources capable of
sustaining substantial surges in the current and instabilities caused by that. This problem is
certainly influencing the final model accuracy, but on the other hand fortifying the methodology
and its applicability in realistic systems.

Because of the promising simulation results and a positive experience with the developed Fuzzy
Model Predictive Controls, only FPFC will be presented. FDMC and FPFC, which were showing
similar results in the simulation of control, but simultaneously the FDMC is more tedious in
terms of calculations. The implementation of FDMC, because of the method’s construction, limits
its applicability on more powerful microcontrollers. The main limitation is strictly connected with
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Figure 5. Simulation model for FMPC applied methods.

MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS 129



the prediction and the control horizon, which builds up complexity in the calculation of the
inverse matrix and matrices’ multiplications. One would say that the main processing time of this
method would be the accessibility to the offline-learnt knowledge, but this experimental example
occupies just 1.6% of the sampling time calculated for the worse-case scenario, if the processor for
each data word uses the accessing time to the internal memory (which is Paged Flash access time).
For the used processor that would be 5.5 μs. Also, the complete system’s learnt knowledge is
compressed into 153 data words in the processor’s internal memory of 4G words. Even though the
tedious work of the identification is conducted offline, which is related to the static part (6), the
comprehensive and the accurate model of the contemporary process OP has to be selected online,
as it is a dynamic function of regression vectors (7). The FNARX model parameters’ vector amðkÞ
in Figure 5 is calculated throughout the processor’s fuzzy engine from the offline rendered global
and distinctive knowledge. That significant processor’s workload together with the FPFC devised
optimal control signal takes approximately 180 μs of the processor’s time of execution.

The PI controller, purely based on MATLAB tools for SISO controllers [29], was back-
compared with the new derived FPFC, without any loss of generality and presenting the overall
reference to any known, modern control solution. It was gained by the auto-tuning method, based
on a singular frequency and minimization of the Integral Time Absolute Error (ITAE), and
subsequently optimized by the gradient descent algorithm for a medium-scale performance. A
meaningful comparison was derived by the process step parameter changes, for the wider
operating range of the DC-DC converter. By applying the variable set point s, the converter will
be guided from the DCM operation to a CCM, where the highest process gain is expected.

The disturbances of the process parameters are commenced simulating the possibly realistic
DC-DC converter’s operating regime.

The internal model discrepancy grows with the prediction horizon, but it is strongly influenced
by the construction of the fuzzy model, where the inductor current is the measured value and
assumed to be constant during the prediction horizon. This is also the reason why the prediction
and control horizon are limited to the low value of Nc = Nu = 12. The stability is improved with
the selection of the objective functions and fine-tuning of the manipulated value suppression
factor. This is, for example, atypical in PFC. Furthermore, the tuning of the suppression factor and
the construction of its time-dependent function preserves the suboptimal solution.

Figure 6. Experimental process for FMPC applied methods.
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The offline optimized PI controller is comparable in the process with a higher gain range,
where the optimization is carried out. Analogically, it is incomparably slow in the lower gain
range. Figure 7 and a detailed Figure 8, from the oscilloscope, present the responses together to
simplify the comparison. The FPFC method shows its robust advantage and for a wide range of
different OPs performs similarly in its aggressiveness and steady-state stability. The main diffi-
culty can be found in the steady-state error, which was not obvious in the simulation results where
the model/process error was negligible, but also in the online processing demands that are
incomparable higher than for the PI. In realistic extents the error reflects in a significant
steady-state offset. It is also a feature of the developed methodology to tackle this kind of problem
and compensate for it. Model-based control gives us the ability to use the predecessor model/
process error data in forming a simple correction to the reference model.

5.1 Fuzzy predictive functional control parameters

The step and parabola selected basis functions are the most suitable in accordance with the
process response on step changes of manipulated variable. These functions request two coincident
points nH = 2, H1 and H2 to be able to construct a feasible MPC problem, and hence, H1 = 1 and
H2 = 12.

The reference trajectory yR coefficient is ar = 0.01 and the suppression factor λ(k) ∈ [40,400].

5.2 PI offline optimized parameters

The PI controller parameters are inherited from [16].
Discrete equivalents are achieved based on a theoretical sample time to be as close as possible

to the continuous form (tsample = 10−6 s)

GPIðzÞ ¼ 5:648 � 10�4 z � 1:000354ð Þ z � 1ð Þ�1: (14)

The offline optimization is carried out around the OP s = 50 V, E = 10 V, R = 12.5 Ω, for

GmðzÞ ¼ �0:090237z þ 0:0904ð Þ z2 � 2z þ 0:9996
	 
�1

: (15)

6. Conclusion

The EMPC certainly brings a standardized control toolbox that is applicable on PEC non-
linear dynamical systems. Different modelling may minimize the main drawback in the
complexity. In this study, we emphasized the idea that fuzzy modelling, as a universal
approximation, is an applicable method. The presented complexity of the identification
and the time-consuming convex programming was integrated into a global model derived
from offline algorithms, which allowed an expectedly shorter execution time, but still
preserved the adaptive tracking of the process dynamic changes. For each time scan, the
fuzzy model produced the closest approximated linear model in a form that is applicable for
the employment of standard finite horizon MPC methods, which then performed similarly
and achieved all the control objectives. The selection of the performance index, including the
suppression factor, was acknowledged to have high importance in guarding the stability and
robustness of the constructed control algorithms. To fortify the knowledge gathered by the
simulation, the complete methodology was tested on a real process of a DC-DC boost
converter. With the experimental results we built a firm basis for further investigation and
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method’s wider applicability on more complex SAS. Further work should be carried out to
achieve a meaningful discussion of the stability and comprehensive exclusion of nonlinearity
problems.

Figure 7. Experimental results of PI and FMPC controllers on step changes of the process parameters and reference point.

Figure 8. Detail from Figure 7, transient on the reference change.
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